Review Questions for Exam 22 Linear Algebra

- 1. What matrix has the effect of rotating every vector through 60° and then projecting the result onto the *y*-axis?
- 2. What matrix represents projection onto the *y*-axis followed by reflection over the *x*-axis?
- 3. What matrix produces a stretching in the y-direction by a factor of 2? Then, Draw the circle $x^2 + y^2 = 1$ and its result from multiplication by the matrix from the previous part.
- 4. State the matrix for the given transformation and its result.
 - a. (1, 2) after rotation by 30°
 - b. (3, -2) after reflection over y = 2x
- 5. What 3 by 3 matrices represent the transformations that
 - a. project every vector onto the *x-y* plane?
 - b. reflect every vector through the *x-y* plane?
 - c. rotate the *x-y* plane through 90°, leaving the *z*-axis alone?
- 6. Suppose a linear T transforms (1, 1) to (2, 2) and (2, 0) to (0, 0). Find T(v) when (a) v = (2, 2). (b) v = (3, 1). (c) v = (-1, 1). (d) v = (a, b).
- 7. (a) What matrix transforms (1, 0) into (1, 5) and transforms (0,1) to (2, 2)?
 - (b) What matrix transforms (1, 5) to (1,0) and (2, 2) to (0,1)?
 - (c) Why does no matrix transform (1, 5) to (1,0) and (2, 10) to (0,1)?

- 8. What matrix transforms (2, 4) to (1, 1) and (1,5) to (0, 2)?
- 9. Find the lengths and the inner product of x = (1, 3, 0, -1) and y = (0, -2, 7, -6).
- 10. Give an example in \mathbb{R}^2 of linearly independent vectors that are not orthogonal. Also, give an example of orthogonal vectors that are not independent.
- 11. Two lines in the plane are perpendicular when the product of their slopes is -1. Apply this to the vectors $x = (x_1, x_2)$ and $y = (y_1, y_2)$, whose slopes are x_2/x_1 and y_2/y_1 , to derive again the orthogonality condition $x^Ty = 0$.